• icon+265(0)111 624 222
  • iconresearch@unima.ac.mw
  • iconChirunga-Zomba, Malawi

Boosting Zn metal reversibility via an efficient ternary aqueous electrolyte


Author(s) : Peter Joseph Chimtali, Asante Obed Frimpong, Fangren Qian, Zeinab Mohamed, Luyao Wen, Jialin Shi, Hassan Akhtar, Dengfeng Cao, Shuangming Chen, Xiaojun Wu, Changda Wang, Li Song
Chemical Engineering Journal
3
Citations (scopus)

Abstract


Access full abstract

10.1016/j.cej.2025.159911

Original language en
Pages (from-to) 159911
Volume 506
Publication status Published - 2025
    1. Monolithic phosphate interphase for highly reversible and stable Zn metal anode. Liu (2023). Angew. Chem. Int. Ed., Vol. 62.
    2. Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. Xiong (2023). ACS Energy Lett., Vol. 8, pp. 1613.
      https://doi.org/10.1021/acsenergylett.3c00154
    3. Regulating “Tip Effect” and Zn2+‐deposition kinetics by in situ constructing interphase for low voltage hysteresis and dendrite‐free Zn anode. Tao (2024). Small Methods.
      https://doi.org/10.1002/smtd.202400463
    4. Monolayer thiol engineered covalent interface toward stable zinc metal anode. Wei (2022). ACS Nano, Vol. 16, pp. 21152.
      https://doi.org/10.1021/acsnano.2c09111
    5. N‐methyl formamide electrolyte additive enabling highly reversible Zn anodes. Chimtali (2024). Small, Vol. 20, pp. 2400673.
      https://doi.org/10.1002/smll.202400673
    6. Bio‐inspired trace hydroxyl‐rich electrolyte additives for high‐rate and stable zn‐ion batteries at low temperatures. Bu (2024). Angew. Chem., Vol. 136.
      https://doi.org/10.1002/ange.202318496
    7. Temperature-dependent nucleation and electrochemical performance of Zn metal anodes. Su (2022). Nano Lett., Vol. 22, pp. 1549.
      https://doi.org/10.1021/acs.nanolett.1c04353
    8. Solvent control of water O− H bonds for highly reversible zinc ion batteries. Wang (2023). Nat. Commun., Vol. 14, pp. 2720.
      https://doi.org/10.1038/s41467-023-38384-x
    9. Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries. Wang (2023). Nat. Commun., Vol. 14, pp. 5443.
      https://doi.org/10.1038/s41467-023-41276-9
    10. Highly reversible aqueous zinc batteries enabled by Zincophilic–Zincophobic interfacial layers and interrupted hydrogen‐bond electrolytes. Cao (2021). Angew. Chem. Int. Ed., Vol. 60, pp. 18845.
      https://doi.org/10.1002/anie.202107378
    11. High‐energy and stable subfreezing aqueous Zn–MnO2 batteries with selective and pseudocapacitive Zn‐ion insertion in MnO2. Gao (2022). Adv. Mater., Vol. 34.
      https://doi.org/10.1002/adma.202201510
    12. Anion additive integrated electric double layer and solvation shell for aqueous zinc ion battery. Yang (2023). Small Methods.
    13. Low-cost aqueous electrolyte with MBA additives for uniform and stable zinc deposition. Chen (2024). ACS Appl. Mater. Interfaces.
    14. Multi‐component crosslinked hydrogel electrolyte toward dendrite‐free aqueous Zn ion batteries with high temperature adaptability. Lu (2022). Adv. Funct. Mater., Vol. 32.
      https://doi.org/10.1002/adfm.202112540
    15. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high‐performance zinc‐ion batteries. Huang (2022). Adv. Mater., Vol. 34.
    16. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc‐ion batteries. Liu (2021). Adv. Funct. Mater., Vol. 31.
    17. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc‐ion batteries. Li (2020). Energy Environ. Mater., Vol. 3, pp. 146.
      https://doi.org/10.1002/eem2.12067
    18. Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. Han (2016). ACS Appl. Mater. Interfaces, Vol. 8, pp. 3021.
      https://doi.org/10.1021/acsami.5b10024
    19. A highly reversible Zn anode with intrinsically safe organic electrolyte for long‐cycle‐life batteries. Naveed (2019). Adv. Mater., Vol. 31.
      https://doi.org/10.1002/adma.201900668
    20. Two birds with one stone: green solvent enabled high‐stability and durable Zn anode in both non‐aqueous and aqueous electrolytes. Naveed (2024). Adv. Funct. Mater..
      https://doi.org/10.1002/adfm.202400949
    21. A water-in-lactone electrolyte with controllable water activity for highly reversible zinc anodes. Li (2024). Nano Energy, Vol. 110059.
    22. Highly stable aqueous/organic hybrid zinc-ion batteries based on a synergistic cathode/anode interface engineering. Zhou (2023). ACS Nano, Vol. 18, pp. 839.
      https://doi.org/10.1021/acsnano.3c09419
    23. An economic bifunctional electrolyte additive for highly reversible zinc anode. Wei (2024). Mater. Today Phys., Vol. 41.
    24. Crystal‐facet manipulation and interface regulation via TMP‐modulated solid polymer electrolytes toward high‐performance Zn metal batteries. Qiu (2023). Adv. Energy Mater., Vol. 13.
      https://doi.org/10.1002/aenm.202301193
    25. N-dimethylformamide tailors solvent effect to boost Zn anode reversibility in aqueous electrolyte. Ma (2022). Natl.sci.rev., Vol. 9.
      https://doi.org/10.1093/nsr/nwac051
    26. Boosting Zn metal anode stability with a dimethylformamide additive. Cao (2024). J. Alloys Compd., Vol. 972.
      https://doi.org/10.1016/j.jallcom.2023.172773
    27. Reconstructing hydrogen bond network enables high voltage aqueous zinc‐ion supercapacitors. Hu (2023). Angew. Chem., Vol. 135.
      https://doi.org/10.1002/ange.202309601
    28. Anion solvation reconfiguration enables high‐voltage carbonate electrolytes for stable Zn/graphite cells. Chen (2020). Angew. Chem. Int. Ed., Vol. 59, pp. 21769.
      https://doi.org/10.1002/anie.202010423
    29. Zn anode sustaining high rate and high loading in organic electrolyte for rechargeable batteries. Raza (2022). Energy Storage Mater., Vol. 46, pp. 523.
      https://doi.org/10.1016/j.ensm.2022.01.043
    30. Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Ma (2022). Energy Storage Mater., Vol. 47, pp. 203.
      https://doi.org/10.1016/j.ensm.2022.02.019
    31. Electrolyte design for in situ construction of highly Zn2+‐conductive solid electrolyte interphase to enable high‐performance aqueous Zn‐ion batteries under practical conditions. Zeng (2021). Adv. Mater., Vol. 33.
      https://doi.org/10.1002/adma.202007416
    32. Toward reversible wide-temperature Zn storage by regulating the electrolyte solvation structure via trimethyl phosphate. Qiu (2022). Chem. Eng. J., Vol. 449.
      https://doi.org/10.1016/j.cej.2022.137843
    33. Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes. Wang (2023). Angew. Chem. Int. Ed., Vol. 62.
    34. Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries. Ao (2020). J. Mater. Chem. A, Vol. 8, pp. 14190.
      https://doi.org/10.1039/D0TA04800C
    35. Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Zhu (2021). Energy Environ. Sci., Vol. 14, pp. 4463.
      https://doi.org/10.1039/D1EE01472B
    36. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Chang (2020). Energy Environ. Sci., Vol. 13, pp. 3527.
      https://doi.org/10.1039/D0EE01538E
    37. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Shi (2015). Chin. Phys. B, Vol. 25.
    38. Dual-function electrolyte additive enabling simultaneous electrode interface and coordination environment regulation for zinc-ion batteries. Chen (2023). Energy Storage Mater., Vol. 58, pp. 20.
      https://doi.org/10.1016/j.ensm.2023.03.010
    39. Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery. Zhong (2022). Nano Energy, Vol. 98.
      https://doi.org/10.1016/j.nanoen.2022.107220
    40. High‐rate, large capacity, and long life dendrite‐free Zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range. Lin (2022). Adv. Sci., Vol. 9.
      https://doi.org/10.1002/advs.202201433