Monolithic phosphate interphase for highly reversible and stable Zn metal anode.
Liu (2023).
Angew. Chem. Int. Ed., Vol. 62.
Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range.
Xiong (2023).
ACS Energy Lett., Vol. 8, pp. 1613.
https://doi.org/10.1021/acsenergylett.3c00154
Regulating “Tip Effect” and Zn2+‐deposition kinetics by in situ constructing interphase for low voltage hysteresis and dendrite‐free Zn anode.
Tao (2024).
Small Methods.
https://doi.org/10.1002/smtd.202400463
Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries.
Wang (2023).
Nat. Commun., Vol. 14, pp. 5443.
https://doi.org/10.1038/s41467-023-41276-9
Highly reversible aqueous zinc batteries enabled by Zincophilic–Zincophobic interfacial layers and interrupted hydrogen‐bond electrolytes.
Cao (2021).
Angew. Chem. Int. Ed., Vol. 60, pp. 18845.
https://doi.org/10.1002/anie.202107378
High‐energy and stable subfreezing aqueous Zn–MnO2 batteries with selective and pseudocapacitive Zn‐ion insertion in MnO2.
Gao (2022).
Adv. Mater., Vol. 34.
https://doi.org/10.1002/adma.202201510
Anion additive integrated electric double layer and solvation shell for aqueous zinc ion battery.
Yang (2023).
Small Methods.
Low-cost aqueous electrolyte with MBA additives for uniform and stable zinc deposition.
Chen (2024).
ACS Appl. Mater. Interfaces.
Multi‐component crosslinked hydrogel electrolyte toward dendrite‐free aqueous Zn ion batteries with high temperature adaptability.
Lu (2022).
Adv. Funct. Mater., Vol. 32.
https://doi.org/10.1002/adfm.202112540
Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high‐performance zinc‐ion batteries.
Huang (2022).
Adv. Mater., Vol. 34.
Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc‐ion batteries.
Liu (2021).
Adv. Funct. Mater., Vol. 31.
Issues and future perspective on zinc metal anode for rechargeable aqueous zinc‐ion batteries.
Li (2020).
Energy Environ. Mater., Vol. 3, pp. 146.
https://doi.org/10.1002/eem2.12067
Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes.
Han (2016).
ACS Appl. Mater. Interfaces, Vol. 8, pp. 3021.
https://doi.org/10.1021/acsami.5b10024
A highly reversible Zn anode with intrinsically safe organic electrolyte for long‐cycle‐life batteries.
Naveed (2019).
Adv. Mater., Vol. 31.
https://doi.org/10.1002/adma.201900668
Two birds with one stone: green solvent enabled high‐stability and durable Zn anode in both non‐aqueous and aqueous electrolytes.
Naveed (2024).
Adv. Funct. Mater..
https://doi.org/10.1002/adfm.202400949
A water-in-lactone electrolyte with controllable water activity for highly reversible zinc anodes.
Li (2024).
Nano Energy, Vol. 110059.
Highly stable aqueous/organic hybrid zinc-ion batteries based on a synergistic cathode/anode interface engineering.
Zhou (2023).
ACS Nano, Vol. 18, pp. 839.
https://doi.org/10.1021/acsnano.3c09419
An economic bifunctional electrolyte additive for highly reversible zinc anode.
Wei (2024).
Mater. Today Phys., Vol. 41.
Crystal‐facet manipulation and interface regulation via TMP‐modulated solid polymer electrolytes toward high‐performance Zn metal batteries.
Qiu (2023).
Adv. Energy Mater., Vol. 13.
https://doi.org/10.1002/aenm.202301193
N-dimethylformamide tailors solvent effect to boost Zn anode reversibility in aqueous electrolyte.
Ma (2022).
Natl.sci.rev., Vol. 9.
https://doi.org/10.1093/nsr/nwac051
Reconstructing hydrogen bond network enables high voltage aqueous zinc‐ion supercapacitors.
Hu (2023).
Angew. Chem., Vol. 135.
https://doi.org/10.1002/ange.202309601
Zn anode sustaining high rate and high loading in organic electrolyte for rechargeable batteries.
Raza (2022).
Energy Storage Mater., Vol. 46, pp. 523.
https://doi.org/10.1016/j.ensm.2022.01.043
Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries.
Ma (2022).
Energy Storage Mater., Vol. 47, pp. 203.
https://doi.org/10.1016/j.ensm.2022.02.019
Electrolyte design for in situ construction of highly Zn2+‐conductive solid electrolyte interphase to enable high‐performance aqueous Zn‐ion batteries under practical conditions.
Zeng (2021).
Adv. Mater., Vol. 33.
https://doi.org/10.1002/adma.202007416
Toward reversible wide-temperature Zn storage by regulating the electrolyte solvation structure via trimethyl phosphate.
Qiu (2022).
Chem. Eng. J., Vol. 449.
https://doi.org/10.1016/j.cej.2022.137843
Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes.
Wang (2023).
Angew. Chem. Int. Ed., Vol. 62.
Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries.
Ao (2020).
J. Mater. Chem. A, Vol. 8, pp. 14190.
https://doi.org/10.1039/D0TA04800C
Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries.
Zhu (2021).
Energy Environ. Sci., Vol. 14, pp. 4463.
https://doi.org/10.1039/D1EE01472B
An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices.
Chang (2020).
Energy Environ. Sci., Vol. 13, pp. 3527.
https://doi.org/10.1039/D0EE01538E
Multi-scale computation methods: Their applications in lithium-ion battery research and development.
Shi (2015).
Chin. Phys. B, Vol. 25.
Dual-function electrolyte additive enabling simultaneous electrode interface and coordination environment regulation for zinc-ion batteries.
Chen (2023).
Energy Storage Mater., Vol. 58, pp. 20.
https://doi.org/10.1016/j.ensm.2023.03.010
Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery.
Zhong (2022).
Nano Energy, Vol. 98.
https://doi.org/10.1016/j.nanoen.2022.107220
High‐rate, large capacity, and long life dendrite‐free Zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range.
Lin (2022).
Adv. Sci., Vol. 9.
https://doi.org/10.1002/advs.202201433