• icon+265(0)111 624 222
  • iconresearch@unima.ac.mw
  • iconChirunga-Zomba, Malawi

Are you a UNIMA researcher? Login

Performance evaluation of gridded satellite-based rainfall products against gauge observations in the Shire River Basin, Malawi


Author(s) : Sheila Kavwenje, Cosmo Ngongondo, Zuze Dulanya, Patsani Kumambala, Maurice Monjerezi
Journal of Hydrology: Regional Studies

Abstract


Access full abstract

10.1016/J.EJRH.2025.102618

Original language en
Pages (from-to) 102618
Volume 60
Publication status Published - 2025
    1. Spatio-temporal rainfall mapping from space: setbacks and strengths. Alemseged (2007). .
    2. Assessment of PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0 rainfall products over a semi-arid subtropical climatic region. Anjum (2022). Water, Vol. 14, (2), pp. 147.
      https://doi.org/10.3390/w14020147
    3. Microwave sensors, imagers and sounders. Aonashi (2020). Satell. Precip. Meas. Vol., Vol. 1, pp. 63.
      https://doi.org/10.1007/978-3-030-24568-9_4
    4. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Ashouri (2015). Bull. Am. Meteorol. Soc., Vol. 96, (1), pp. 69.
      https://doi.org/10.1175/BAMS-D-13-00068.1
    5. Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia. Ayehu (2018). Atmos. Meas. Tech., Vol. 11, (4), pp. 1921.
      https://doi.org/10.5194/amt-11-1921-2018
    6. Evaluation and application of multi-source satellite rainfall product CHIRPS to assess spatio-temporal rainfall variability on data-sparse western margins of Ethiopian highlands. Belay (2019). Remote Sens, Vol. 11, (22), pp. 2688.
      https://doi.org/10.3390/rs11222688
    7. Merging satellite products and rain-gauge observations to improve hydrological simulation: a review. Belay (2022). Earth, Vol. 3, (4), pp. 1275.
      https://doi.org/10.3390/earth3040072
    8. Remote sensed-based rainfall estimations over the East and West Africa regions for disaster risk management. Boluwade (2020). ISPRS J. Photogramm. Remote Sens., Vol. 167, pp. 305.
      https://doi.org/10.1016/j.isprsjprs.2020.07.015
    9. Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. Dembélé (2016). Int. J. Remote Sens, Vol. 37, (17), pp. 3995.
      https://doi.org/10.1080/01431161.2016.1207258
    10. Suitability of 17 rainfall and temperature gridded datasets for large-scale hydrological modelling in West Africa. Dembélé (2020). Hydrol. Earth Syst. Sci. Discuss., Vol. 2020, pp. 1.
    11. Challenges with availability and quality of climate data in Africa. Dinku (2019). .
    12. Remote sensing of African rainfall. Dinku (2020). .
    13. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Dinku (2018). Q. J. R. Meteorol. Soc., Vol. 144, pp. 292.
      https://doi.org/10.1002/qj.3244
    14. Applicability of CHIRPS-based satellite rainfall estimates for South Africa. Du Plessis (2021). J. South Afr. Inst. Civ. Eng., Vol. 63, (3), pp. 43.
    15. V: Daily catchment rainfall estimated from Meteosat. Dugdale (1991). Hydrol. Process, Vol. 5, (3), pp. 261.
      https://doi.org/10.1002/hyp.3360050306
    16. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Funk (2015). Sci. Data, Vol. 2, (1), pp. 1.
      https://doi.org/10.1038/sdata.2015.66
    17. Evaluation of multiple climate data sources for managing environmental resources in East Africa. Gebrechorkos (2018). Hydrol. Earth Syst. Sci., Vol. 22, (8), pp. 4547.
      https://doi.org/10.5194/hess-22-4547-2018
    18. Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Gebrechorkos (2019). Sci. Rep., Vol. 9, (1).
      https://doi.org/10.1038/s41598-019-47933-8
    19. Performance evaluation of six gridded precipitation products throughout Iran using ground observations over the last two decades (2000–2020). Ghorbanian (2022). Remote Sens, Vol. 14, (15), pp. 3783.
      https://doi.org/10.3390/rs14153783
    20. Bias-corrected CHIRP satellite rainfall for water level simulation, Lake Ziway, Ethiopia. Goshime (2020). J. Hydrol. Eng., Vol. 25, (9).
      https://doi.org/10.1061/(ASCE)HE.1943-5584.0001965
    21. Optimal areal rainfall estimation using raingauges and satellite data. Grimes (1999). J. Hydrol., Vol. 222, (1-4), pp. 93.
      https://doi.org/10.1016/S0022-1694(99)00092-X
    22. Spatio-temporal analysis of rainfall variability and seasonality in Malawi. Haghtalab (2019). Reg. Environ. Change, Vol. 19, pp. 2041.
      https://doi.org/10.1007/s10113-019-01535-2
    23. The global precipitation climatology project (GPCP) combined precipitation dataset. Huffman (1997). Bull. Am. Meteorol. Soc., Vol. 78, (1), pp. 5.
      https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2
    24. Verification of APHRODITE precipitation data set in Bangladesh. Islam (2021). J. Eng. Sci., pp. 51.
      https://doi.org/10.3329/jes.v12i1.53101
    25. Evaluation of satellite-based products for extreme rainfall estimations in the eastern coastal areas of China. Jiang (2019). J. Integr. Environ. Sci., Vol. 16, (1), pp. 191.
      https://doi.org/10.1080/1943815X.2019.1707233
    26. Integrated statistical and graphical non-parametric trend analysis of annual and seasonal rainfall in the Shire River Basin, Malawi. Kavwenje (2024). Theor. Appl. Climatol., Vol. 155, (3), pp. 2053.
      https://doi.org/10.1007/s00704-023-04743-3
    27. Globally gridded satellite observations for climate studies. Knapp (2011). Bull. Am. Meteorol. Soc., Vol. 92, (7), pp. 893.
      https://doi.org/10.1175/2011BAMS3039.1
    28. Fluctuation of rainfall time series in Malawi: an analysis of selected areas. Kumbuyo (2014). Geofizika, Vol. 31, (1), pp. 13.
      https://doi.org/10.15233/gfz.2014.31.1
    29. Hydrological performance evaluation of multiple satellite precipitation products in the upper Blue Nile basin, Ethiopia. Lakew (2020). J. Hydrol. Reg. Stud., Vol. 27.
    30. Comparison of rainfall products over Sub-Saharan Africa. Le Coz (2020). J. Hydrometeorol., Vol. 21, (4), pp. 553.
      https://doi.org/10.1175/JHM-D-18-0256.1
    31. Variability of extreme wet events over Malawi. Libanda (2017). Geogr. Pannonica, Vol. 21, (4).
    32. RMSE is not enough: guidelines to robust data-model comparisons for magnetospheric physics. Liemohn (2021). J. Atmos. Sol. Terr. Phys., Vol. 218.
      https://doi.org/10.1016/j.jastp.2021.105624
    33. Evaluating the spatial representativeness of ground-based observations for satellite total ozone products. Lyu (2024). Int. J. Appl. Earth Obs. Geoinf., Vol. 129.
    34. Validation and intercomparison of satellite-based rainfall products over Africa using TAHMO in-situ rainfall observations. Macharia (2022). J. Hydromet, Vol. 23, (7), pp. 1131.
    35. TAMSAT. Maidment (2020). Sat. Precip. Meas Vol., Vol. 1, pp. 393.
    36. Evaluation of satellite-based and model re-analysis rainfall estimates for uganda. Maidment (2012). Meteorol. Appl., Vol. 19, (3), pp. 315.
    37. The 30 year TAMSAT African rainfall climatology and time series (TARCAT) data set. Maidment (2014). J. Geophys. Res. Atmos., Vol. 119, (18), pp. 10.
      https://doi.org/10.1002/2014JD021927
    38. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Maidment (2017). Sci. Data, Vol. 4, (1), pp. 1.
    39. Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. McCollum (2002). J. Appl. Meteorol. Climatol., Vol. 41, (11), pp. 1065.
      https://doi.org/10.1175/1520-0450(2002)041<1065:EOBOSR>2.0.CO;2
    40. Spatiotemporal variation of rainfall and its implications on water resources management: the case of Manyame River catchment in Zimbabwe. Murove (2023). World Water Policy, Vol. 9, (1), pp. 113.
      https://doi.org/10.1002/wwp2.12090
    41. Spatial-temporal trends of rainfall, maximum and minimum temperatures over West Africa. Muthoni (2020). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 13, pp. 2960.
      https://doi.org/10.1109/JSTARS.2020.2997075
    42. Evaluation of spatial and temporal characteristics of rainfall in Malawi: a case of data scarce region. Ngongondo (2011). Theor. Appl. Climatol., Vol. 106, pp. 79.
      https://doi.org/10.1007/s00704-011-0413-0
    43. African rainfall climatology version 2 for famine early warning systems. Novella (2013). J. Appl. Meteorol. Climatol., Vol. 52, (3), pp. 588.
      https://doi.org/10.1175/JAMC-D-11-0238.1
    44. Performance evaluation of satellite-based rainfall products over Nigeria. Ogbu (2020). Climate, Vol. 8, (1), pp. 103.
      https://doi.org/10.3390/cli8100103
    45. Merging the infrared fleet and the microwave constellation for tropical hydrometeorology (TAPEER) and global climate monitoring (GIRAFE) applications. Roca (2020). Satell. Precip. Meas. Vol., Vol. 1, pp. 429.
      https://doi.org/10.1007/978-3-030-24568-9_24
    46. A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, Eastern India. Ruidas (2022). Environ. Earth Sci., Vol. 81, (5), pp. 145.
      https://doi.org/10.1007/s12665-022-10269-0
    47. Evaluation of TAMSAT satellite rainfall estimates for southern Africa: a comparative approach. Seyama (2019). Phys. Chem. Earth Parts A/B/C., Vol. 112, pp. 141.
      https://doi.org/10.1016/j.pce.2019.02.008
    48. Significant improvement in rainfall forecast over Delhi: annual and seasonal verification. Srivastava (2022). J. Atmos. Sci. Res., Vol. 5, (3), pp. 10.
      https://doi.org/10.30564/jasr.v5i3.4769
    49. A comparison of rainfall estimation techniques for sub-Saharan Africa. Symeonakis (2009). Int. J. Appl. Earth Obs. Geoinf., Vol. 11, (1), pp. 15.
    50. Spatiotemporal climate variability and trends in the Upper Gelana Watershed, northeastern highlands of Ethiopia. Tadesse (2024). Heliyon, Vol. 10, (5).
      https://doi.org/10.1016/j.heliyon.2024.e27274
    51. Characterization of spatio-temporal trends and periodicity of precipitation over Malawi during 1979–2015. Tadeyo (2020). Atmosphere, Vol. 11, (9), pp. 891.
      https://doi.org/10.3390/atmos11090891
    52. Extension of the TAMSAT satellite-based rainfall monitoring over Africa and from 1983 to present. Tarnavsky (2014). J. Appl. Meteorol. Climatol., Vol. 53, (12), pp. 2805.
      https://doi.org/10.1175/JAMC-D-14-0016.1
    53. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Toté (2015). Remote Sens, Vol. 7, (2), pp. 1758.
      https://doi.org/10.3390/rs70201758
    54. Effect of data coverage on the estimation of mean and variability of precipitation at global and regional scales. Wan (2013). J. Geophys. Res. Atmos., Vol. 118, (2), pp. 534.
      https://doi.org/10.1002/jgrd.50118
    55. African climate change: taking the shorter route. Washington (2006). Bull. Am. Meteorol. Soc., Vol. 87, (1), pp. 1355.
      https://doi.org/10.1175/BAMS-87-10-1355
    56. Performance evaluation of multiple satellite rainfall products for Dhidhessa River Basin (DRB), Ethiopia. Wedajo (2021). Atmos. Meas. Tech., Vol. 14, (3), pp. 2299.
      https://doi.org/10.5194/amt-14-2299-2021
    57. WMO (2011). .
    58. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Xie (1997). Bull. Am. Meteorol. Soc., Vol. 78, (11), pp. 2539.
      https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
    59. Progress in integrating remote sensing data and hydrologic modeling. Xu (2014). Prog. Phys. Geogr., Vol. 38, (4), pp. 464.
      https://doi.org/10.1177/0309133314536583
    60. The effect of rain gauge density and distribution on runoff simulation using a lumped hydrological modelling approach. Zeng (2018). J. Hydrol., Vol. 563, pp. 106.
      https://doi.org/10.1016/j.jhydrol.2018.05.058
    61. Evaluation and comparison of interpolated gauge rainfall data and gridded rainfall data in Florida, USA. Zhang (2018). Hydrol. Sci. J., Vol. 63, (4), pp. 561.
      https://doi.org/10.1080/02626667.2018.1444767
    62. Evaluation of the CMIP5 GCM rainfall simulation over the Shire River Basin in Malawi. Zuzani (2023). Theor. Appl. Climatol., Vol. 151, (1), pp. 273.
      https://doi.org/10.1007/s00704-022-04186-2