• icon+265(0)111 624 222
  • iconresearch@unima.ac.mw
  • iconChirunga-Zomba, Malawi

Occurrence and ecological risk assessment of heavy metals in agricultural soils of Lake Chilwa catchment in Malawi, Southern Africa


Author(s) : Chisomo Mussa, Timothy Biswick, Wisdom Changadeya, Harold Wilson Mapoma, Annett Junginger
SN Appl. Sci.
11
Citations (scopus)

Abstract


Understanding the levels and associated ecological risk caused by heavy metals is important for the sustainable management and utilization of Lake Chilwa catchment, an important ecosystem in Malawi providing fertile lands for agriculture and a designated wetland ratified by the Ramsar convention in 1997. Concentrations of chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), arsenic (As), mercury (Hg) and cadmium (Cd) were analyzed from 22 soil sampling locations. Extraction and quantification were achieved by microwave digestion and Inductively Coupled Plasma Optical Emission Spectrometer, respectively. Mean values were detected in the following order; Zn > Cr > Ni > Cu > Pb > As. Strong correlations were observed between As and Pb (r = 0.85), Cr and Ni (r = 0.82), Cu and Ni (r = 0.81), Cr and Cu (r = 0.8), and Pb and Zn (r = 0.73) suggesting similar sources of input. Principal component analysis revealed that Cu, Pb, Zn and As originate from anthropogenic activities, while Cr and Ni were geogenic. The ecological risk caused by these metals, calculated by the Ecological Risk Index (RI) method, showed a low to moderate ecological risk. The wetland areas had higher overall concentrations and RI values compared to the rest of the catchment. It is therefore important to enforce measures to manage and control these levels to avoid their damaging effects.


Original language en
Volume 2
Issue number 11
Publication status Published - 2020
    1. TM Mungai (2016). Environ Sci Pollut Res, Vol. 23, (18), pp. 18533.
      https://doi.org/10.1007/s11356-016-7042-1
    2. J Yabe (2010). J Vet Med Sci, Vol. 72, (10), pp. 1257.
      https://doi.org/10.1292/jvms.10-0058
    3. A El Nemr (2012). Egypt J Aquat Res, Vol. 38, (2), pp. 67.
      https://doi.org/10.1016/j.ejar.2012.11.001
    4. IE Ahaneku (2014). Pol J Environ Stud, Vol. 23, (4), pp. 1091.
      Ahaneku IE, Sadiq BO (2014) Assessment of heavy metals in Nigerian agricultural soils. Pol J Environ Stud 23(4):1091–1100
    5. B Tenai (2016). Afr J Environ Sci Technol, Vol. 10, (6), pp. 162.
      Tenai B, Mbaria JJ, Muchemi G, Jansen R, Kotze A, Naidoo V, Gitau F (2016) Assessment of heavy metals concentration in water, soil sediment and biological tissues of the lesser flamingos in four eastern rift valley lakes. Afr J Environ Sci Technol 10(6):162–166
    6. HM Mahabadi (2020). SN ApplSci, Vol. 2, (8), pp. 1420.
      https://doi.org/10.1007/s42452-020-03219-7
    7. JHA Clark (2015). Environ Monit Assess, Vol. 187, (7), pp. 439.
      https://doi.org/10.1007/s10661-015-4608-1
    8. Y Ikenaka (2014). Afr J Environ Sci Technol, Vol. 4, (11), pp. 109.
      Ikenaka Y, Nakayama SMM, Muzandu K, Choongo K, Teraoka H, Mizuno N, Ishizuka M (2014) Heavy metal contamination of soils and sediments in Zambia. Afr J Environ Sci Technol 4(11):109–128
    9. O Opaluwa (2012). Pelagia Research Library, Vol. 3, (2), pp. 780.
      Opaluwa O, Aremu M, Ogbo L, Abiola K, Odiba I, Abubakar M, Nweze N (2012) Heavy metal concentrations in soils, plant leaves and crops grown around dump sites in Lafia Metropolis, Nasarawa State Nigeria. Pelagia Research Library 3(2):780–784
    10. FR Sulaiman (2020). SN Appl Sci, Vol. 2, (8), pp. 1430.
      https://doi.org/10.1007/s42452-020-03231-x
    11. JJ Musa (2017). Arid Zone J Eng, Technol Environ, Vol. 13, (5), pp. 593.
      Musa JJ, Mustapha HI, Bala JD, Ibrahim YY, Akos MP, Daniel ES, Kuti IA (2017) Heavy metals in agricultural soils in Nigeria: a Review. Arid Zone J Eng, Technol Environ 13(5):593–603
    12. S Kumwenda (2012). J Basic Appl Sci Res, Vol. 2, (7), pp. 6833.
      Kumwenda S, Tsakama M, Kalulu K, Kambala C (2012) Determination of biological, physical and chemical pollutants in mudi river, Blantyre, Malawi. J Basic Appl Sci Res 2(7):6833–6839
    13. RCG Chidya (2011). Phys Chem Earth, Vol. 36, (14–15), pp. 865.
      https://doi.org/10.1016/j.pce.2011.07.070
    14. LL Kamzati (2019). Int J Environ Sci Technol, Vol. 17, (1), pp. 253.
      https://doi.org/10.1007/s13762-019-02464-7
    15. C Mussa (2019). ChemSearch J, Vol. 10, (2), pp. 66.
      Mussa C, Biswick T, Changadeya W, Junginger A, Vunain E (2019) Levels and spatial distribution of heavy metals in lake Chilwa catchment Southern Malawi. ChemSearch J 10(2):66–73
    16. CC Kaonga (2012). pp. 1.
      Kaonga CC, Monjerezi M (2012) Periphyton and earthworms as biological indicators of metal pollution in streams of Blantyre City, Malawi. In: Balkis N (ed) Water pollution. InTech Open Access, Croatia, pp 1–22
    17. L Hakanson (1980). Water Res, Vol. 14, (8), pp. 975.
      https://doi.org/10.1016/0043-1354(80)90143-8
    18. . .
      USEPA (2010) Land application of biosolids for home vegetable gardens. USEPA clean water act title 40, section 503.13. https://ecfr.gpoaccess.gov
    19. M Malan (2015). Environ Monit Assess, Vol. 187, (1), pp. 1.
      https://doi.org/10.1007/s10661-014-4085-y
    20. E Gimeno-García (1996). Environ Pollut, Vol. 92, (1), pp. 19.
      https://doi.org/10.1016/0269-7491(95)00090-9
    21. D Pullanikkatil (2015). Afr J Aquat Sci, Vol. 40, (3), pp. 277.
      https://doi.org/10.2989/16085914.2015.1077777
    22. F Chen (2007). Soils, Vol. 39, pp. 291.
      Chen F, Pu L (2007) Relationship between heavy metals and basic properties of agricultural soils in Kunshan County. Soils 39:291–296
    23. D Zimakowska-Gnoińska (2000). Environ Monit Assess, Vol. 61, (2), pp. 301.
      https://doi.org/10.1023/A:1006105329210
    24. FX Han (2002). Naturwissenschaften, Vol. 89, (11), pp. 497.
      https://doi.org/10.1007/s00114-002-0373-4
    25. KH Kim (1999). Water Air Soil Contam, Vol. 111, pp. 109.
      https://doi.org/10.1023/A:1005056310428
    26. W Wilcke (2005). J Plant Nutr Soil Sci, Vol. 168, (5), pp. 676.
      https://doi.org/10.1002/jpln.200521811
    27. SR Jean-Philippe (2012). Proc Int Acad Ecol Environ Sci, Vol. 2, (3), pp. 139.
      Jean-Philippe SR, Labbé N, Franklin JA, Jonson A (2012) Detection of mercury and other metals in mercury contaminated soils using mid-infrared spectroscopy. Proc Int Acad Ecol Environ Sci 2(3):139–149
    28. SK Prajapati (2014). Proc Int Acad Ecol Environ Sci, Vol. 4, (2), pp. 68.
      Prajapati SK, Meravi N (2014) Heavy metal speciation of soil and Calotropis procera from thermal power plant area. Proc Int Acad Ecol Environ Sci 4(2):68–71
    29. MRG Sayyed (2011). Proc Int Acad Ecol Environ Sci, Vol. 1, (1), pp. 36.
      Sayyed MRG, Sayadi MH (2011) Variations in the heavy metal accumulations within the surface soils from the Chitgar industrial area of Tehran. Proc Int Acad Ecol Environ Sci 1(1):36–46
    30. K Sekabira (2010). Int J Environ Sci Technol, Vol. 7, (3), pp. 435.
      https://doi.org/10.1007/BF03326153
    31. NU Benson (2014). J Sci Res Reports, Vol. 3, (4), pp. 610.
      https://doi.org/10.9734/JSRR/2014/7465
    32. H Xue (2003). Adv Environ Res, Vol. 8, (1), pp. 69.
      https://doi.org/10.1016/S1093-0191(02)00136-3
    33. EE Codling (2009). Commun Soil Sci Plant Anal, Vol. 40, (17–18), pp. 2800.
      https://doi.org/10.1080/00103620903173822
    34. JJ Morrell (2010). J Environ Qual, Vol. 32, (6), pp. 2095.
      https://doi.org/10.2134/jeq2003.2095
    35. JO Duruibe (2007). Int J Phys Sci, Vol. 2, pp. 112.
      Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118