• icon+265(0)111 624 222
  • iconresearch@unima.ac.mw
  • iconChirunga-Zomba, Malawi

Hydro-geochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: An integrated application of hierarchical cluster and principal component analyses


Author(s) : Maurice Monjerezi, Rolf D. Vogt, Per Aagaard, John D.K. Saka
Applied Geochemistry
95
Citations (scopus)

Abstract


Access full abstract

10.1016/J.APGEOCHEM.2011.05.013

Original language en
Pages (from-to) 1399-1413
Volume 26
Issue number 8
Publication status Published - 2011

UN SDGs

This research output contributes to the following United Nations (UN) Sustainable Development Goals (SDGs)

sdg

UN SDGs

This research output contributes to the following United Nations (UN) Sustainable Development Goals (SDGs)

sdg

    1. . .
      Allison, J.D., Brown, D.S., Novo-Gradac, K.J., 1991. MINTEQA2, a geochemical assessment model for environmental systems. Report EPA/600/3-91/0-21. USEPA, Athens, Georgia.
    2. . .
      APHA (American Public Health Association), 1985. Standard Methods of the Examination of Water/Wastewater, 16th ed. APHA, AWWA, and WPCF, New York.
    3. . .
      Bath, A.H., 1980. Hydrochemistry in groundwater development: report on an advisory visit to Malawi. Brit. Geol. Surv. Rep. WD/OS/80/20.
    4. . .
      Bloomfield, K., 1966. 1:1,000,000 Geological map of Malawi. Geol. Surv., Malawi.
    5. . .
      Bradford, R.B., 1973. Groundwater reconnaissance study: lower Shire valley. Report RB/5. File T601. Geol. Surv., Malawi.
    6. . .
      Carter, G.S., Bennet, J.D., 1973. The geology and mineral resources of Malawi. Bull 6. Geol. Surv., Malawi.
    7. Post-Pan-African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems. Castaing (1991). Tectonophysics, Vol. 191, pp. 55.
      https://doi.org/10.1016/0040-1951(91)90232-H
    8. Numerical analysis of hydrogeochemical data: a case study (Alto Guadalentõan, southeast Spain). Ceron (2000). Appl. Geochem., Vol. 15, pp. 1053.
      https://doi.org/10.1016/S0883-2927(99)00105-5
    9. Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water–rock interaction and hydrologic mixing. Chae (2006). J. Hydrol., Vol. 321, pp. 326.
      https://doi.org/10.1016/j.jhydrol.2005.08.006
    10. The Malawi rift: geology, tectonics and seismicity. Chapola (1992). Tectonophysics, Vol. 209, pp. 159.
      https://doi.org/10.1016/0040-1951(92)90017-Z
    11. Groundwater geochemistry and calcite cementation of the Aquia Aquifer in southern Maryland. Chappelle (1983). Water Resour. Res., Vol. 19, pp. 545.
      https://doi.org/10.1029/WR019i002p00545
    12. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Cloutier (2008). J. Hydrol., Vol. 353, pp. 294.
      https://doi.org/10.1016/j.jhydrol.2008.02.015
    13. . .
      Cooper, W.G.G., Bloomfield, K., 1961. Geology of the Tambani–Salambidwe area. Bull 13. Geol. Surv., Malawi.
    14. Groundwater, gravity and rift valleys in Malawi. Davis (1969). Groundwater, Vol. 7, (2), pp. 34.
      https://doi.org/10.1111/j.1745-6584.1969.tb01275.x
    15. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Dessert (2003). Chem. Geol., Vol. 202, pp. 257.
      https://doi.org/10.1016/j.chemgeo.2002.10.001
    16. Cyclic wetting and drying of the soil zone as an influence on the chemistry of ground water in arid terrains. Drever (1978). Am. J. Sci., Vol. 278, pp. 1448.
      https://doi.org/10.2475/ajs.278.10.1448
    17. Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): a geostatistical, geochemical, and tomographic study. El Yaouti (2009). Appl. Geochem., Vol. 24, pp. 16.
      https://doi.org/10.1016/j.apgeochem.2008.10.005
    18. Deciphering groundwater flow systems in Oasis valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system. Farnham (2000). Math. Geol., Vol. 32, pp. 943.
      https://doi.org/10.1023/A:1007522519268
    19. Factor analytical approaches for evaluating groundwater trace element chemistry data. Farnham (2003). Anal. Chim. Acta, Vol. 490, pp. 123.
      https://doi.org/10.1016/S0003-2670(03)00350-7
    20. The origin of high sodium bicarbonate waters in the Atlantic and Gulf Coastal Plains. Foster (1950). Geochim. Cosmochim. Acta, Vol. 1, pp. 33.
      https://doi.org/10.1016/0016-7037(50)90007-X
    21. Chemical and physical denudation in the Amazon River Basin. Gaillardet (1997). Chem. Geol., Vol. 142, pp. 141.
      https://doi.org/10.1016/S0009-2541(97)00074-0
    22. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Gaillardet (1999). Chem. Geol., Vol. 159, pp. 3.
      https://doi.org/10.1016/S0009-2541(99)00031-5
    23. The hydrogeochemistry of fractured plutonic rocks in the Canadian Shield. Gascoyne (1994). Appl. Hydrogeol., Vol. 2, pp. 43.
      https://doi.org/10.1007/s100400050044
    24. Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells–Owens valley area, southeastern California, USA. Güler (2004). J. Hydrol., Vol. 285, pp. 177.
      https://doi.org/10.1016/j.jhydrol.2003.08.019
    25. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Güler (2002). Hydrogeology, Vol. 10, pp. 455.
      https://doi.org/10.1007/s10040-002-0196-6
    26. . .
      Habgood, F., 1963. The geology of the country west of the Shire River between Chikwawa and Chiromo. Bull 14. Geol. Surv., Malawi.
    27. Sediment alteration and clay mineral diagenesis in a regional ground water flow system, Mississippi Gulf Coastal Plain. Hanor (1988). Trans. Gulf Coast Assoc. Geol. Soc., Vol. 38, pp. 495.
    28. Investigation of hydrochemical characteristics of groundwater from Cretaceous–Eocene limestone aquifers in southern Ghana and Togo using hierarchical cluster analysis. Helstrup (2007). Hydrogeol., Vol. 15, pp. 977.
      https://doi.org/10.1007/s10040-007-0165-1
    29. Water quality in the Tibetan Plateau: major ions and trace elements in the headwaters of four major Asian rivers. Huang (2009). Sci. Total Environ., Vol. 407, pp. 6242.
      https://doi.org/10.1016/j.scitotenv.2009.09.001
    30. . .
      Husson, F., Josse, J., Lê, S., Mazet, J., 2009. FactoMineR: Factor Analysis and Data Mining with R. R Package Version 1.12. <http://www.CRAN.R-project.org/package=FactoMineR>.
    31. . .
      ISO (International Standards Organisation), 1985. Water Quality – Determination of Electrical Conductivity. ISO 7888.
    32. . .
      ISO (International Standards Organisation), 1993. Water Quality – Sampling – Part 11: Guidance on Sampling of Ground Waters. ISO 5667-11.
    33. . .
      ISO (International Standards Organisation), 1994. Water Quality – Determination of pH. ISO 10523-1.
    34. The varimax criteria for analytical rotation in factor analysis. Kaiser (1958). Psychometrika, Vol. 23, pp. 187.
      https://doi.org/10.1007/BF02289233
    35. Levels of cadmium, manganese and lead in water and algae: spirogyra aequinoctialis. Kaonga (2008). Int. J. Environ. Sci. Technol., Vol. 5, pp. 471.
      https://doi.org/10.1007/BF03326043
    36. An anomalous occurrence of sodium bicarbonate water in a flood plain in a carbonate terrain. Krothe (1979). Groundwater, Vol. 17, pp. 595.
      https://doi.org/10.1111/j.1745-6584.1979.tb03360.x
    37. An investigation of chemical pollutants in lower Shire River, Malawi. Lakudzala (1999). Malawi J. Sci. Technol., Vol. 5, pp. 87.
    38. FactoMineR: an R package for multivariate analysis. Lê (2008). J. Stat. Softw., Vol. 25, (1).
      https://doi.org/10.18637/jss.v025.i01
    39. Geochemistry of groundwater in cretaceous sediments of the Southeastern Coastal Plain of Eastern Mississippi and Western Alabama. Lee (1985). Water. Resour. Res., Vol. 21, pp. 1545.
      https://doi.org/10.1029/WR021i010p01545
    40. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Liu (2003). Sci. Total Environ., Vol. 313, pp. 77.
      https://doi.org/10.1016/S0048-9697(02)00683-6
    41. . .
      Lockwood Survey Cooperation, 1970. Lower Shire valley – Landforms, Soils Land Classification. Food and Agricultural Organisation (FAO).
    42. . .
      Lowole, M.W., 1985. Properties, management and classification of vertisols in Malawi. In: Fifth Meeting of the Eastern African Subcommittee for Soil Correction and Land Evaluation (World soil reports). Food and Agricultural Organisation (FAO).
    43. . .
      Malawi Department of Water, 1986. National Water Resources Master Plan. Annex 6. Groundwater Resources of Malawi. Department of Water, Ministry of Works and Supplies. UNDP, Projects MLW-79-015/MLW-84-003.
    44. The ‘principal components’ statistical method as a complementary approach to geochemical methods in water quality factor identification; application to the Coastal Plain aquifer of Israel. Melloul (1992). J. Hydrol., Vol. 140, pp. 49.
      https://doi.org/10.1016/0022-1694(92)90234-M
    45. Quality of groundwater from shallow wells of selected villages in Blantyre District, Malawi. Mkandawire (2008). Phys. Chem. Earth, Vol. 33, pp. 807.
      https://doi.org/10.1016/j.pce.2008.06.023
    46. Chemical mineralogy and geothermometry of the middle Shire granulites, Malawi. Morel (1989). J. Afr. Earth Sci., Vol. 9, pp. 169.
      https://doi.org/10.1016/0899-5362(89)90018-3
    47. A study of fluoride groundwater occurrence in Nathenje, Lilongwe, Malawi. Msonda (2007). Phys. Chem. Earth, Vol. 32, pp. 1178.
      https://doi.org/10.1016/j.pce.2007.07.050
    48. Chemical pollution in selected reservoirs and rivers in Lilongwe district, Malawi. Mumba (1999). Malawi J. Sci. Technol., Vol. 5, pp. 74.
    49. Effect of sanitation facilities, domestic solid waste disposal and hygiene practices on water quality in Malawi’s urban poor areas: a case study of South Lunzu Township in the city of Blantyre. Palamuleni (2002). Phys. Chem. Earth, Vol. 27, pp. 845.
      https://doi.org/10.1016/S1474-7065(02)00079-7
    50. . .
      Parkhurst, D.L., Appelo, C.A.J., 1999. User’s guide to PHREEQC (Version 2) – a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. US Department of the Interior, US Geol. Surv. Water Resour. Invest. Rep. 99-4259.
    51. Biological, chemical and physical drinking water quality from shallow wells in Malawi: case study of Blantyre, Chiradzulu and Mulanje. Pritchard (2007). Phys. Chem. Earth, Vol. 32, pp. 1167.
      https://doi.org/10.1016/j.pce.2007.07.013
    52. Assessment of groundwater quality in shallow wells within the southern districts of Malawi. Pritchard (2008). Phys. Chem. Earth, Vol. 33, pp. 812.
      https://doi.org/10.1016/j.pce.2008.06.036
    53. . .
      R Development Core Team, 2007. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, <http://www.R-project.org>.
    54. Water quality assessment in streams and wastewater treatment plants of Blantyre, Malawi. Sajidu (2007). Phys. Chem. Earth, Vol. 32, pp. 1391.
      https://doi.org/10.1016/j.pce.2007.07.045
    55. A biochemical study of pollution in the middle and lower Shire River, Malawi. Saka (1999). Malawi J. Sci. Technol., Vol. 5, pp. 63.
    56. Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use. Schot (1992). J. Hydrol., Vol. 134, pp. 297.
      https://doi.org/10.1016/0022-1694(92)90040-3
    57. Discrimination of groundwater sources using cluster analysis, MANOVA, canonical analysis and discriminant analysis. Steinhorst (1985). Water Resour. Res., Vol. 21, pp. 1149.
      https://doi.org/10.1029/WR021i008p01149
    58. Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Neveda, USA. Stetzenbach (2001). J. Hydrol., Vol. 243, pp. 254.
      https://doi.org/10.1016/S0022-1694(00)00418-2
    59. Modeling alternative paths of chemical evolution of Na–HCO3-type groundwater near Oak Ridge, Tennessee, USA. Toran (1999). Hydrogeology, Vol. 7, pp. 355.
      https://doi.org/10.1007/s100400050208
    60. Multivariate analysis in hydrochemistry: an example of the use of factor and correspondence analyses. Usunoff (1989). Ground Water, Vol. 27, pp. 27.
      https://doi.org/10.1111/j.1745-6584.1989.tb00004.x
    61. Hierarchical grouping to optimize an objective function. Ward (1963). J. Am. Stat. Assoc., Vol. 58, pp. 236.
      https://doi.org/10.1080/01621459.1963.10500845
    62. . .
      WHO, 2004. Guidelines for Drinking Water Quality, vol. 1: Recommendations. World Health Organisation, Geneva.
    63. A simple spectrophotometric determination of nitrate in water, resin, and soil extracts. Yang (1998). Soil Sci. Soc. Am. J., Vol. 62, pp. 1108.
      https://doi.org/10.2136/sssaj1998.03615995006200040036x
    64. Hydrogeological and hydrochemical characterization of the Voltaian Basin: the Afram Plains area, Ghana. Yidana (2008). Environ. Geol., Vol. 53, pp. 1213.
      https://doi.org/10.1007/s00254-007-0710-1

UN SDGs

This research output contributes to the following United Nations (UN) Sustainable Development Goals (SDGs)

sdg