• icon+265(0)111 624 222
  • iconresearch@unima.ac.mw
  • iconChirunga-Zomba, Malawi

Using <SUP>87</SUP>Sr/<SUP>86</SUP>Sr, δ<SUP>18</SUP>O and δ<SUP>2</SUP>H isotopes along with major chemical composition to assess groundwater salinization in lower Shire valley, Malawi


Author(s) : Maurice Monjerezi, Rolf D. Vogt, Per Aagaard, Asfaw Gebretsadik Gebru, John D.K. Saka
Applied Geochemistry
28
Citations (scopus)

Abstract


Access full abstract

10.1016/J.APGEOCHEM.2011.08.003

Original language en
Pages (from-to) 2201-2214
Volume 26
Issue number 12
Publication status Published - 2011

UN SDGs

This research output contributes to the following United Nations (UN) Sustainable Development Goals (SDGs)

sdg

UN SDGs

This research output contributes to the following United Nations (UN) Sustainable Development Goals (SDGs)

sdg

    1. . .
      Allison, J.D., Brown, D.S., Novo-Gradac, K.J., 1991. MINTEQA2, a Geochemical Assessment Model for Environmental Systems. Report EPA/600/3-91/0-21. USEPA, Athens, Georgia.
    2. APHA (American Public Health Association) (1985). .
    3. Isotopic and trace-element constraints on the origin and evolution of saline groundwaters from central Missouri. Banner (1989). Geochim. Cosmochim. Acta, Vol. 53, pp. 383.
      https://doi.org/10.1016/0016-7037(89)90390-6
    4. . .
      Bath, A.H., 1980. Hydrochemistry in Groundwater Development: Report on an Advisory Visit to Malawi. British Geological Survey Report. WD/OS/80/20.
    5. . .
      Bloomfield, K., 1966. 1:1, 000,000 Geological Map of Malawi. Geol. Surv. Malawi.
    6. Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss–Massa aquifer, southwest of Morocco. Bouchaou (2008). J. Hydrol., Vol. 352, pp. 267.
      https://doi.org/10.1016/j.jhydrol.2008.01.022
    7. . .
      Bradford, R.B., 1973. Groundwater Reconnaissance Study: Lower Shire Valley. Report RB/5. File T601. Geol. Surv. Malawi.
    8. Tracing of weathering reactions and water flowpaths: a multi-isotope approach. Bullen (1998). pp. 611.
    9. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Burke (1982). Geology, Vol. 10, pp. 516.
      https://doi.org/10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2
    10. Application of multiple geochemical indicators, including the stable isotopes of water, to differentiate water quality evolution in a region influenced by various agricultural practices and domestic wastewater treatment and disposal. Butler (2007). Sci. Total Environ., Vol. 388, pp. 149.
      https://doi.org/10.1016/j.scitotenv.2007.08.031
    11. . .
      Carter, G.S., Bennet, J.D., 1973. The Geology and Mineral Resources of Malawi. Bull 6. Geol. Surv. Mw.
    12. Controls on 87Sr/86Sr ratios of groundwater in silicate-dominated aquifers: SE Murray Basin. Cartwright (2007). Australia Chem. Geol., Vol. 246, pp. 107.
      https://doi.org/10.1016/j.chemgeo.2007.09.006
    13. Post-Pan-African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems. Castaing (1991). Tectonophysics, Vol. 1991, (191), pp. 55.
      https://doi.org/10.1016/0040-1951(91)90232-H
    14. The Malawi rift: geology, tectonics and seismicity. Chapola (1992). Tectonophysics, Vol. 209, pp. 159.
      https://doi.org/10.1016/0040-1951(92)90017-Z
    15. Multivariate analysis of stream water chemical data: the use of principal components analysis for the end-member mixing problem. Christophersen (1992). Water Resour. Res., Vol. 28, (1), pp. 99.
      https://doi.org/10.1029/91WR02518
    16. Modeling stream water chemistry as a mixture of soil water end-members–a step towards second-generation acidification models. Christophersen (1990). J. Hydrol., Vol. 116, pp. 307.
      https://doi.org/10.1016/0022-1694(90)90130-P
    17. Clark (1997). .
    18. . .
      Cooper, W.G.G., Bloomfield, K., 1961. Geology of the Tambani-Salambidwe Area. Bull 13. Geol. Surv. Malawi.
    19. Isotopic variations in meteoric waters. Craig (1961). Science, Vol. 133, pp. 1702.
      https://doi.org/10.1126/science.133.3465.1702
    20. Groundwater, gravity and rift valleys in Malawi. Davis (1969). Groundwater, Vol. 7, (2), pp. 34.
      https://doi.org/10.1111/j.1745-6584.1969.tb01275.x
    21. Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin. Dogramaci (2002). Australia J. Hydrol., Vol. 262, pp. 50.
      https://doi.org/10.1016/S0022-1694(02)00021-5
    22. Faure (2005). .
    23. Environmental isotopes in lake studies. Gonfiantini (1986). pp. 113.
    24. Saline groundwater in the Münsterland Cretaceous Basin, Germany: clues to its origin and evolution. Grobe (2002). Mar. Pet. Geol., Vol. 19, pp. 307.
      https://doi.org/10.1016/S0264-8172(02)00019-3
    25. . .
      Habgood, F., 1963. The Geology of the Country West of the Shire River between Chikwawa and Chiromo. Bull 14. Geol. Surv. Malawi.
    26. The importance of silicate weathering of a sedimentary aquifer in arid Central Australia indicated by very high 87Sr/86Sr ratios. Harrington (2003). Chem. Geol., Vol. 199, pp. 281.
      https://doi.org/10.1016/S0009-2541(03)00128-1
    27. Modeling stream water chemistry as a mixture of soil water end-members – an application to the Panola mountain catchment, Georgia, USA. Hooper (1990). J. Hydrol., Vol. 116, pp. 321.
      https://doi.org/10.1016/0022-1694(90)90131-G
    28. . .
      Husson, F., Josse, J., Lê, S., Mazet, J., 2009. FactoMineR: Factor Analysis and Data Mining with R. R Package Version 1.12. <http://CRAN.R-project.org/package=FactoMineR>.
    29. . .
      IAEA/WMO, 2006. Global Network of Isotopes in Precipitation. The GNIP Database. <http://www.iaea.org/water>.
    30. . .
      ISO (International Standards Organisation), 1985. Water Quality – Determination of Electrical Conductivity. ISO 7888.
    31. . .
      ISO (International Standards Organisation), 1993. Water Quality – Sampling – Part 11: Guidance on Sampling of Ground Waters. ISO 5667-11.
    32. . .
      ISO (International Standards Organisation), 1994. Water Quality – Determination of pH. ISO 10523-1.
    33. The varimax criteria for analytical rotation in factor analysis. Kaiser (1958). Psychometrika, Vol. 23, pp. 187.
      https://doi.org/10.1007/BF02289233
    34. Direct measurements of the D/H and 18O/16O fractionation factors between vapor and liquid water in the temperature range from 10 to 40. Kakiuchi (1979). Geochem. J., Vol. 13, pp. 307.
      https://doi.org/10.2343/geochemj.13.307
    35. . .
      Kawanabe, Y., Yasuhara, M., Mauri, A., Kohno, T., Satoh, Y., 1999. An isotopic study of the groundwater regime of a seepage caldera lake district, southern Japan. In: Proceedings of IUGG 99 Symposium HS4, Birmingham. IAHS Publ. No. 258, pp. 183–192.
    36. Hydrogeochemical conditions and evolution at the Äspö HRL. Laaksoharju (1999). Sweden Appl. Geochem., Vol. 14, pp. 835.
      https://doi.org/10.1016/S0883-2927(99)00023-2
    37. Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Laaksoharju (1999). Appl. Geochem., Vol. 14, pp. 861.
      https://doi.org/10.1016/S0883-2927(99)00024-4
    38. Understanding groundwater chemistry using mixing models. Laaksoharju (2008). Appl. Geochem., Vol. 23, pp. 1921.
      https://doi.org/10.1016/j.apgeochem.2008.02.018
    39. Source waters and flowpaths in a seasonally snow-covered catchment, Colorado Front Range, USA. Liu (2004). Water Resour. Res., Vol. 40, (W09401), pp. 1.
    40. . .
      Lockwood Survey Cooperation, 1970. Lower Shire Valley – Landforms, Soils and Land Classification. Food and Agricultural Organisation (FAO).
    41. Geochemical evidence for groundwater behaviour in an unconfined aquifer, south Florida. Meyers (1993). J. Hydrol., Vol. 148, pp. 249.
      https://doi.org/10.1016/0022-1694(93)90263-9
    42. Hydro-geochemical processes in an area with saline groundwater in Lower Shire River Valley, Malawi: an integrated application of hierarchical cluster and principal component analyses. Monjerezi (2011). Appl. Geochem., Vol. 26, pp. 1399.
      https://doi.org/10.1016/j.apgeochem.2011.05.013
    43. Chemical mineralogy and geothermometry of the middle Shire granulites, Malawi. Morel (1989). J. African Earth Sci., Vol. 9, pp. 169.
      https://doi.org/10.1016/0899-5362(89)90018-3
    44. Strontium isotope systematics used to decipher the origin of groundwaters sampled from granitoids: the Vienne Case (France). Négrel (2001). Chem. Geol., Vol. 177, pp. 287.
      https://doi.org/10.1016/S0009-2541(00)00414-9
    45. Groundwater chemistry and water-rock interactions at Stripa. Nordstrom (1989). Geochim. Cosmochim. Acta, Vol. 53, pp. 1727.
      https://doi.org/10.1016/0016-7037(89)90294-9
    46. Sulphur, sulphate, oxygen and strontium isotope composition of Cenozoic Turkish evaporates. Palmer (2004). Chem. Geol., Vol. 209, pp. 341.
      https://doi.org/10.1016/j.chemgeo.2004.06.027
    47. . .
      Parkhurst, D.L., Appelo, C.A.J., 1999. User’s guide to PHREEQC (Version 2) – A Computer Program for Speciation, Batch-reaction, One-dimensional Transport and Inverse Geochemical Calculations. US Department of the Interior, US Geological Survey. Water Resources Investigation Report, 99-4259.
    48. The co-precipitation of Sr2+ with calcite at 25°C and 1 atm. Pingitore (1986). Geoch. Cosmochim. Acta, Vol. 50, pp. 2195.
      https://doi.org/10.1016/0016-7037(86)90074-8
    49. . .
      R Development Core Team, 2007. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. <http://www.R-project.org>.
    50. 87Sr/86Sr as indicator of flowpaths and weathering rates in the Plynlimon experimental catchments, Wales, UK. Shand (2007). Chem. Geol., Vol. 236, pp. 247.
      https://doi.org/10.1016/j.chemgeo.2006.09.012
    51. . .
      Shela, O.N., 2000. Naturalisation of Lake Malawi levels and shire river flows. Challenges of Water Resources Research and Sustainable Utilisation of the Lake Malawi-Shire River System. 1st Warfsa/Waternet Symposium: Sustainable Use of Water Resources, Maputo.
    52. Regional groundwater flow paths in Trans-Pecos, Texas inferred from oxygen, hydrogen, and strontium isotopes. Uliana (2007). J. Hydrol., Vol. 334, pp. 334.
      https://doi.org/10.1016/j.jhydrol.2006.10.015
    53. Fingerprinting feldspar phenocrysts using crystal isotopic composition stratigraphy; implications for crystal transfer and magma mingling in S-type granites. Waight (2000). Contrib. Mineral Petrol., Vol. 139, pp. 227.
      https://doi.org/10.1007/s004100000128
    54. Hierarchical grouping to optimize an objective function. Ward (1963). J. Am. Stat. Assoc., Vol. 58, pp. 236.
      https://doi.org/10.1080/01621459.1963.10500845
    55. Strontium isotopes and major elements as tracers of groundwater evolution: example from the upper Castle Hayne aquifer of North Carolina. Woods (2000). Ground Water, Vol. 38, (5), pp. 762.
      https://doi.org/10.1111/j.1745-6584.2000.tb02712.x

UN SDGs

This research output contributes to the following United Nations (UN) Sustainable Development Goals (SDGs)

sdg