• icon+265(0)111 624 222
  • iconresearch@unima.ac.mw
  • iconChirunga-Zomba, Malawi

Mycotoxin levels and characterization of natural anti-fungal phytochemicals in pearl millet (<i>Pennisetum glaucum</i>) from Nigeria's six agroecological zones


Author(s) : Hadiza Kudu Muhammad, Hadiza Lami Muhammad, Patrick Berka Njobeh, Maurice Monjerezi, Limbikani Matumba, Hussaini Anthony Makun
Mycotoxin Res
4
Citations (scopus)

Abstract


This study reports levels of multiple mycotoxins across Nigeria’s six agro-ecological zones and corresponding levels of natural anti-fungal phytochemicals present in pearl millet (PM). 220 representative composite samples of PM were collected for mycotoxin analysis using ultrahigh performance liquid chromatography-mass spectrometry (UHPLC-MS), and 24 were randomly selected for determination of metabolites using gas chromatography-high resolution time of flight-mass spectrometry (GC-HRTOF-MS). In total, 15 mycotoxins were detected, all with levels below the European Union (EU) permissible limits and level of aflatoxins only up to 1.34 µg/kg. This is in sharp contrast to high levels of mycotoxins reported in maize samples from the same agroecological zones. Phytochemical analysis of the same samples identified a total of 88 metabolites, 30 of which are known anti-fungal properties from other previously published studies. The most common of these include methyl ester, bis (2-ethylhexyl) phthalate, and ç-tocopherol. The number of anti-fungal metabolites recovered from each sample ranged from 3 to 17 and varied widely in both number and composition across the agroecological zones. The anti-fungal metabolites may probably make PM less susceptible to fungal proliferation compared to other grains. Hence, it is worth exploring for possible sources of biological control products from PM.


Original language en
Pages (from-to) 243-252
Volume 38
Issue number 4
Publication status Published - 2022
    1. WA Abia (2013). Food Control, Vol. 31, (2), pp. 438.
      https://doi.org/10.1016/j.foodcont.2012.10.006
    2. SAO Adeyeye (2016). Cogent Food Agric, Vol. 2, (1), pp. 1213127.
      https://doi.org/10.1080/23311932.2016.1213127
    3. G Agoramoorthy (2007). Braz J Microbiol, Vol. 38, (4), pp. 739.
      https://doi.org/10.1590/S1517-83822007000400028
    4. J Ajani (2017). Indian J Adv Chem Sci, Vol. 5, (4), pp. 340.
      Ajani J, Vali PK (2017) Screening of millets for the natural occurrence of aflatoxin B1 and their susceptibility in samples collected during pre-harvesting, harvesting and post-harvesting conditions. Indian J Adv Chem Sci 5(4):340–343
    5. A Ali (2017). Planta Daninha, Vol. 5, pp. 1.
      Ali A, Javaid A, Shoib A (2017) GC-MS Analysis and anti-fungal activity of methanolic root extract of chenopodium album against Sclerotium rolfsii. Planta Daninha 5:1–5
    6. ME Alpert (1971). Cancer, Vol. 28, (1), pp. 253.
      https://doi.org/10.1002/1097-0142(197107)28:1<253::AID-CNCR2820280151>3.0.CO;2-G
    7. . .
      AOAC – Association of Official Analytical Chemists (1995) Sub-committee on feed additives and contaminants; AOAC: Rockville, MD, USA pp 41–42
    8. T Arif (2009). J Asian Nat Prod Res, Vol. 11, (7), pp. 621.
      https://doi.org/10.1080/10286020902942350
    9. . .
      ASC - Acme Synthetic Chemical (2018) Undecanoic acid. Last consolidated version available from: http://acmechem.com/undecanoic-acid. Accessed 28 Sept 2018
    10. J Atehnkeng (2016). Microb Biotechnol, Vol. 9, pp. 75.
      https://doi.org/10.1111/1751-7915.12324
    11. J Atehnkeng (2008). Int J Food Microbiol, Vol. 122, pp. 74.
      https://doi.org/10.1016/j.ijfoodmicro.2007.11.062
    12. MA Azzouz (1982). J Food Prot, Vol. 45, (14), pp. 1298.
      https://doi.org/10.4315/0362-028X-45.14.1298
    13. R Bandyopadhyay (2007). Food Addit Contam, Vol. 24, (10), pp. 1109.
      https://doi.org/10.1080/02652030701553251
    14. R Baran (2009). J Drugs Dermatol, Vol. 8, (3), pp. 276.
      Baran R, Thomas L (2009) Combination of fluconazole and alpha-tocopherol in the treatment of yellow nail syndrome. J Drugs Dermatol 8(3):276–278
    15. . .
      Carolina HP, Johan LFK, Vuyisile ST (2011) Anti-fungal free fatty acids: A Review. 1St ed. A. Mendez-Vilas: Science against microbial pathogens: Communicating Current Research and Technical Advances, 61-71
    16. A Chala (2014). Food Control, Vol. 45, pp. 29.
      https://doi.org/10.1016/j.foodcont.2014.04.018
    17. LM Chandrasekaran (2011). Eur Rev Med Pharmacol Sci, Vol. 15, pp. 775.
      Chandrasekaran LM, Senthilkumar A, Venkatesalu V (2011) Antibacterial and anti-fungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum. Eur Rev Med Pharmacol Sci 15:775–780
    18. . .
      Chemical Book (2018) Quinoline compound https://www.chemicalbook.com/ProductCatalog_EN/111116-4.htm. Quinoline Chemical Book. Accessed 26 Sept 2018
    19. CA Chilaka (2018). Food Cont, Vol. 84, (5), pp. 226.
      https://doi.org/10.1016/j.foodcont.2017.08.005
    20. CA Chilaka (2016). Toxins, Vol. 8, pp. 342.
      https://doi.org/10.3390/toxins8110342
    21. . .
      Codex - Codex Alimentarius Commission (2008) Proposed draft code of practice for the prevention (reduction) of mycotoxin contamination in cereals, including annexes on ochratoxin A, Zearalenone, Fumonisins and Tricothecenes. Codex Committee on Food Additives and Contaminants, Thirty-fourth Session. Codex Alimentarius Commission /RCP 51–2003
    22. AM Dias-Martins (2018). Food Res Int, Vol. 109, pp. 175.
      https://doi.org/10.1016/j.foodres.2018.04.023
    23. A Dudhate (2018). PLoS ONE, Vol. 13, (4), pp. e0195908.
      https://doi.org/10.1371/journal.pone.0195908
    24. EC European Commission (2006). Off J Eur Union, Vol. L70, pp. 12.
      EC European Commission (2006) Commission regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off J Eur Union L70:12–34
    25. EC European Commission (2007). Off J Eur Union L, Vol. 255, pp. 14.
      EC European Commission (2007) Commission Regulation (EC) Nº 1126/2007 of 28 September 2007 amending Regulation (EC) Nº 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off J Eur Union L 255:14–17
    26. EC- European Commission (2010). Off J Eur Union L, Vol. 50, pp. 8.
      EC- European Commission (2010) Commission regulation (EU) no 165/2010 of 26 February 2010, amending regulation (EC) no 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxin. Off J Eur Union L 50:8–12
    27. MH El-Sayed (2012). World Appl Sci J, Vol. 20, (9), pp. 1202.
      El-Sayed MH (2012) Di-(2-ethylhexyl) Phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from the culture filtrate of newly isolated soil Streptomyces (Streptomyces mirabilis Strain NSQu-25). World Appl Sci J 20(9):1202–1212
    28. A Elaiyaraja (2016). J Pharmacogn Phytochem, Vol. 5, (6), pp. 158.
      Elaiyaraja A, Chandramohan G (2016) Comparative phytochemical profile of Indoneesiella Echioides (L) Nees leaves using GC-MS. J Pharmacogn Phytochem 5(6):158–171
    29. C Ezekiel (2012). Nigeria Eur Food Res Technol, Vol. 235, pp. 285.
      https://doi.org/10.1007/s00217-012-1755-2
    30. CN Ezekiel (2014). Nigeria Mycology, Vol. 5, (1), pp. 16.
      https://doi.org/10.1080/21501203.2014.889769
    31. G Fabien (2013). RSC Adv, Vol. 3, pp. 9942.
      https://doi.org/10.1039/C3RA41890A
    32. . .
      FAOSTAT - Food and Agriculture Organization of the United Nations Statistics (2018) Agricultural bulletin board on data collection, dissemination and quality of statistics. Last consolidated version available from: www.faostat3.fao.org
    33. SH Freiesleben (2014). Med Aromat Plants, Vol. 3, pp. 154.
      https://doi.org/10.4172/2167-0412.1000154
    34. MH Garba (2017). World J Microbiol, Vol. 2, (1), pp. 053.
      Garba MH, Makun HA, Jigam AA, Muhammad HL, Patrick BN (2017) Incidence and toxigenicity of fungi contaminating sorghum from Nigeria. World J Microbiol 2(1):053–063
    35. RJ Grayer (2001). Phytochemistry, Vol. 56, (3), pp. 253.
      https://doi.org/10.1016/S0031-9422(00)00450-7
    36. D Gupta (2017). Biotechnol Reports, Vol. 13, pp. 19.
      https://doi.org/10.1016/j.btre.2016.11.002
    37. JC Gyung (2010). Plant Pathol J, Vol. 26, (4), pp. 360.
      https://doi.org/10.5423/PPJ.2010.26.4.360
    38. R Hassan (2015). Int J Adv Biol, Vol. 2, (1), pp. 1.
      Hassan R, El-Kadi S, Sand M (2015) Effect of some organic acids on some fungal growth and their toxins production. Int J Adv Biol 2(1):1–11
    39. T Hori (1985). Talanta, Vol. 32, (8), pp. 735.
      https://doi.org/10.1016/0039-9140(85)80176-4
    40. H Houissa (2019). Food Control, Vol. 106, pp. 106738.
      https://doi.org/10.1016/j.foodcont.2019.106738
    41. M Hove (2016). Food Cont, Vol. 69, pp. 36.
      https://doi.org/10.1016/j.foodcont.2016.04.038
    42. Q Jianbo (2016). J Sci Food Agric, Vol. 96, (13), pp. 4536.
      https://doi.org/10.1002/jsfa.7670
    43. E Jones (1995). Theor Appl Genet, Vol. 91, pp. 448.
      https://doi.org/10.1007/bf00222972
    44. RS Kankate (2019). Arab J Chem, Vol. 12, (8), pp. 2224.
      https://doi.org/10.1016/j.arabjc.2015.02.002
    45. M Krishnaveni (2014). Int J Pharm Sci Rev Res, Vol. 27, pp. 273.
      Krishnaveni M, Dhanalakshmi R, Nandhini N (2014) GC-MS analysis of phytchemicals, fatty acid profile, antimicrobial activity of gossypium seeds. Int J Pharm Sci Rev Res 27:273–276
    46. V Kumar (2013). Eur J Med Chem, Vol. 69, pp. 735.
      https://doi.org/10.1016/j.ejmech.2013.08.053
    47. PN Lakshmi (2017). World J Pharm Pharm Sci, Vol. 6, (12), pp. 1895.
      Lakshmi PN, Latha HS (2017) Synthesis, antimicrobial evaluation and molecular properties prediction of Chalcones n. World J Pharm Pharm Sci 6(12):1895–1905
    48. PJ Landrigan (2004). Int J Occup Med Environ Health, Vol. 17, (1), pp. 175.
      Landrigan PJ (2004) Children as a vulnerable population. Int J Occup Med Environ Health 17(1):175–177
    49. HA Makun (2013). Food Control, Vol. 31, (2), pp. 566.
      https://doi.org/10.1016/j.foodcont.2012.09.043
    50. HA Makun (2010). Afr J Food Sci, Vol. 4, (4), pp. 127.
      Makun HA, Anjorin ST, Moronfoye B, Adejo FO, Afolabi OA, Fagbayibo G, Balogun BO, Surajudeen AA (2010) Fungal and aflatoxin contaminations of some human food commodities in Nigeria. Afr J Food Sci 4(4):127–135
    51. HA Makun (2011). J Food Saf, Vol. 31, pp. 334.
      https://doi.org/10.1111/j.1745-4565.2011.00305.x
    52. K Mashini (2006). J Environ Sci Health Part B, Vol. 41, (3), pp. 285.
      https://doi.org/10.1080/03601230500357348
    53. L Matumba (2015). Food Addit Contam Part A Chem Anal Control Expo Risk Assess, Vol. 32, (6), pp. 960.
      https://doi.org/10.1080/19440049.2015.1029535
    54. L Matumba (2015). Mycotoxin Res, Vol. 31, pp. 57.
      https://doi.org/10.1007/s12550-014-0209-z
    55. B Mbambo (2012). J Medicinal Plants Res, Vol. 6, (38), pp. 5135.
      https://doi.org/10.5897/JMPR12.151
    56. GJ Mohammed (2016). Int J Pharmacogn Phytochem Res, Vol. 8, (3), pp. 480.
      Mohammed GJ, Al-Jassani MJ, Hameed IH (2016) Anti-bacterial, anti-fungal activity and chemical analysis of Punica grantanum (Pomegranate peel) using GC-MS and FTIR spectroscopy. Int J Pharmacogn Phytochem Res 8(3):480–494
    57. RC Muchow (1989). Yield Potential Field Crop Res, Vol. 20, (3), pp. 191.
      https://doi.org/10.1016/0378-4290(89)90079-8
    58. PB Njobeh (2009). Mycotoxin Res, Vol. 26, (1), pp. 47.
      https://doi.org/10.1007/s12550-009-0039-6
    59. OF Obidi (2013). Int J Biotechnol, Vol. 2, (6), pp. 113.
      Obidi OF, Adelowotan AO, Ayoola GA, Johnson OO, Hassan MO, Nwachukwu SCU (2013) Antimicrobial activity of orange oil on selected pathogens. Int J Biotechnol 2(6):113–122
    60. PO Okonkwo (1978). Nutrit Rep Int, Vol. 17, (3), pp. 387.
      Okonkwo PO, Nwokolo C (1978) Aflatoxin B1: sample procedure to reduce levels in tropical foods. Nutrit Rep Int 17(3):387–395
    61. ZSC Okoye (1984). Trans R Soc Trop Med Hyg, Vol. 78, (3), pp. 417.
      https://doi.org/10.1016/0035-9203(84)90146-9
    62. AR Opoku (1981). J Agric Food Chem, Vol. 29, (6), pp. 1247.
      https://doi.org/10.1021/jf00108a036
    63. UO Osamwonyi (2012). Niger Food J, Vol. 30, (1), pp. 35.
      https://doi.org/10.1016/S0189-7241(15)30011-4
    64. . .
      Pohl CH, Kock JLF, Thibane VS (2011) Anti-fungal free fatty acids: a review. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technical advances, 1st edn. FORMATEX, Pp 61–71
    65. W Prabhakar (2016). Int J Chem Stud, Vol. 4, (2), pp. 51.
      Prabhakar W, Babu KS, Ravindranath LK, Reddy PGP, Latha J (2016) Synthesis and anti-bacterial, anti-fungal activity of novel pyrazoline derivatives containing phenothiazine ring. Int J Chem Stud 4(2):51–58
    66. J Rubert (2012). Food Control, Vol. 25, (1), pp. 374.
      https://doi.org/10.1016/j.foodcont.2011.11.004
    67. G Sabithira (2017). J Altern Complement Med, Vol. 3, (1), pp. 1.
      https://doi.org/10.9734/JOCAMR/2017/30871
    68. A Sharma (2016). Asian J Chem, Vol. 28, (7), pp. 1633.
      https://doi.org/10.14233/ajchem.2016.19790
    69. GS Shephard (1996). J AOAC Int, Vol. 79, (3), pp. 671.
      https://doi.org/10.1093/jaoac/79.3.671
    70. AZ Sherazi (2016). Planta Daninha, Vol. 34, (4), pp. 675.
      https://doi.org/10.1590/S0100-83582016340400007
    71. M Sofie (2010). J Agric Food Chem, Vol. 58, (1), pp. 66.
      https://doi.org/10.1021/jf903859z
    72. MZ Sultan (2010). J Sci Res, Vol. 2, (1), pp. 191.
      https://doi.org/10.3329/jsr.v2i1.2696
    73. JM Udoh (2000). J Stored Prod Res, Vol. 36, pp. 187.
      https://doi.org/10.1016/S0022-474X(99)00042-9
    74. . .
      https://doi.org/10.18052/www.scipress.com/IJPPE.7.53
    75. KK Varsha (2015). Int J Food Microbiol, Vol. 211, pp. 44.
      https://doi.org/10.1016/j.ijfoodmicro.2015.06.025
    76. E Vega-Avila (2012). Rev Latinoam Quím, Vol. 40, (2), pp. 75.
      Vega-Avila E, Tapia-Aquila R, Reyes-Chilpa R, Guzmán-Gutiérrez SL, Pérez-Flores J, Velasco-Lezama R (2012) Actividad antibacteriana y antifúngica de Justicia spicigera. Rev Latinoam Quím 40(2):75–82
    77. A Vijayalakshmi (2014). J Agric Technol, Vol. 10, (6), pp. 1587.
      Vijayalakshmi A, Sharmila R, Gowda NKS, Sindhu G (2014) Study on antifungal effect of herbal compounds against mycotoxin producing fungi. J Agric Technol 10(6):1587–1597
    78. A Vimalavady (2013). Eur J Exp Biol, Vol. 3, (1), pp. 73.
      Vimalavady A, Kadavul, (2013) Phytocomponents identified on the various extracts of stem of Hugonia mystax L. (Linaceae). Eur J Exp Biol 3(1):73–80
    79. A Waheed (2018). Saudi J Biol Sci, Vol. 26, (6), pp. 1253.
      https://doi.org/10.1016/j.sjbs.2018.05.025
    80. JP Wilson (2006). Mycopathologia, Vol. 161, (2), pp. 101.
      https://doi.org/10.1007/s11046-005-0170-7
    81. A Zablotskaya (2018). SILICON, Vol. 10, pp. 1129.
      https://doi.org/10.1007/s12633-017-9585-2
    82. Y-Z Zhu (2018). Mar Drugs, Vol. 16, (3), pp. 94.
      https://doi.org/10.3390/md16030094